

 1 (17)

2021-10-04

Communication between Siemens S7-1200 and Vaisala HMP7 probe via
Modbus RTU

This guide is meant to be used to help you communicate with an HMP7 probe with a Siemens S7-
1200 PLC using Simatic Step 7 v16 software.

In this guide we show you how to wire an HMP7 probe to the communication board (CB 1241
RS485) on a Siemens S7-1200 PLC, communicate between the HMP7 and the S7-1200 via Modbus
RTU and convert the holding registers into human readable floating-point values. We use the
Siemens S7-1200 as a Modbus master to read the relative humidity and temperature readings from
the HMP7 as the Modbus slave. Some tables and diagrams are provided to use as a guide, but it is
highly recommended to reference your own instruments’ manual. It is assumed that you have at
least some basic experience with ladder logic, the Simatic Step 7 software and connecting the
Siemens S7-1200 to a PC.

1 Wiring

In this section we connect a single HMP7 probe to the communication board (CB 1241 RS485) on a
Siemens S7-1200 PLC. We use a cable from Vaisala for the physical connection. Make sure your
PLC is detached from a power source before you attempt any wiring.

1. If you are using a cable from Vaisala, the following wire colors signify the function:

• Brown: Power supply

• White: RS-485 –

• Blue: Power GND and RS-485 common

• Black: RS-485 +

2. If not, reference the diagram below.

(HMPx Modbus wiring: HMP Series User Guide p.22)

 2 (17)

2021-10-04

3. See the diagram below for the wiring.

(HMPx Modbus wiring: HMP Series User Guide p.23)

4. Attach T/RA to the white cable (pin 2) and T/RB to the black cable (pin 4) in the Vaisala

cable. Connect the Brown cable (pin 1) to DC power +, and the blue cable (pin 3) to ground
(M) and DC power -

 3 (17)

2021-10-04

2 Configuring the port on the communication module for Modbus RTU

In this section we will configure the communication module for Modbus RTU using the function
block MB_COMM_LOAD in TIA16 with the Simatic Step 7 Basic software.

1. Drag an empty box to an empty network and type in MB_COMM_LOAD or select it from
the instruction window on the right-hand side of the screen.

2. The Call options window opens where you can change the name of the block and confirm it.

3. Create a new Data block to store the variables for MB_COMM_LOAD

 4 (17)

2021-10-04

4. Uncheck the “Optimized block access” box under attributes in properties

 5 (17)

2021-10-04

5. Add the following variables with the data types in the data block for the MB_COMM_LOAD
function block:

• BAUD, UDInt

• PARITY, UInt

• DONE, Bool

• ERROR, Bool

• STATUS, Word

6. Set the baud rate and parity according to your probe’s specifications. In our case 19200 for

the baud rate and 0 for the parity.

7. Add the variables from the Data block to MB_COMM_LOAD_DB

8. Set the PORT variable to the communication module that is installed on your PLC

9. To change the stop bits, under the Program blocks folder, open the System blocks folder
then the Program resources folder, then open MB_COMM_LOAD_DB. At the bottom of
MB_COMM_LOAD_DB you will find the STOP_BITS where you can set the appropriate
value for your probe. We set the value as 2.

 6 (17)

2021-10-04

 7 (17)

2021-10-04

3 Communicating with the HMP7 Probe

In this section we will show you how to use MB_MASTER function block to communicate with the
HMP7 probe, which values to choose for the variables and how to store the holding registers.

1. Drag an empty box to an empty network and type MB_MASTER into it or select the block
from the instruction window on the right-hand side of the screen.

2. The Call options window opens where you can change the name of the block and confirm it.

3. Create a new Data block to store the variables for MB_MASTER

 8 (17)

2021-10-04

4. Uncheck the “Optimized data access” box under attributes in properties.

5. Add the following variables with the data types to the new data block:

• MB_ADDR, UInt

• MODE, USInt

• DATA_ADDR, UDInt

 9 (17)

2021-10-04

• DATA_LEN, UInt

• DONE, Bool

• BUSY, Bool

• ERROR, Bool

• STATUS, Word

• REQ, Bool

6. We want to read the holding registers, to do so we must choose Mode 0, and the Modbus

Address starting from 40001. Address 40001 corresponds to register 1.

 10 (17)

2021-10-04

7. Set the variables to their appropriate places on MB_MASTER_DB

8. Once you have created MB_MASTER_DB it is time to pass the instance of it to the MB_DB

argument of MB_COMM_LOAD_DB

 11 (17)

2021-10-04

Now it is time to create a new Data block to store the values from the holding registers

1. Create a new data block to store the holding registers by clicking on the “Add new block”
under Program blocks.

2. Uncheck “Optimized block access” in Attributes under properties.

 12 (17)

2021-10-04

3. Create an array of UInt with the same number of elements as the value for DATA_LEN you

selected.

 13 (17)

2021-10-04

4. Add the array to the DATA_PTR variable of MB_MASTER

4 Converting word addresses to human readable 32-bit floating point values:

The data sent via Modbus is split into two 16-bit words, we need to combine the two words into a
32-bit floating point value to get a readable value. We will create a new Function block that moves
and converts the bits into a 32-bit float.

1. Create a new Function block to convert the values by clicking on the “Add new block” under
Program blocks and selecting function block. Make sure that the language selected is LAD.

2. Uncheck “Optimized block access” under attributes in properties

 14 (17)

2021-10-04

3. We will take advantage of the AT overlay to combine the two words into a 32-bit floating

point value. First create the Real variable into which the two words are combined in the
Output section of the function block variables.

4. Directly under the Real variable, create another variable with the Data type as “AT”

5. The AT variable Data type should then change to that of an array, change the array Data

type to UInt and the Array limits to 0..1

 15 (17)

2021-10-04

6. Add into the input section, an array of UInt with the same number of elements as the

Holding register array.

7. Now it is time to move the holding register data into the overlaying array. We get the data

from the probe in little endian format, we must then reverse the order of the words when we

move them to the overlaying array. In other words, the second element of the data array

goes to the first element of the target array and the first element of the data array goes to

the second element of the target array.

 16 (17)

2021-10-04

8. Add the function block to a new network in the main program block and have the done bit

from MB_MASTER trigger the function block.

9. Set the data array as the input and save the outputs in another variable.

 17 (17)

2021-10-04

5 Triggering a MB_MASTER cycle

In this section we will show the ladder logic that continuously triggers a new MB_MASTER cycle
after each completed cycle. We want the new cycle to be triggered after the probe has responded or
it has ended in an error. We added a closed BUSY contact to make sure that a new request does not
attempt to trigger a new cycle while MB_MASTER is already busy with the previous request. We
added the “FirstScan” open contact to trigger the first cycle before the done or the error bit is
activated.

